BurnPlot: The Ultimate Guide to Visualizing Burn Data


What you’ll build in this tutorial

You’ll create an interactive BurnPlot dashboard that shows:

  • A geographic map of burn locations (latitude/longitude)
  • A temporal timeline of incidents (date/time)
  • A heatmap showing burn intensity or area over time
  • Filters to explore by cause, severity, vegetation type, or region

This combination gives immediate spatial, temporal, and quantitative context — essential for incident response, research, policy-making, and safety audits.


1) Preparing your data

Good visuals start with clean, well-structured data.

Required fields (minimum):

  • id — unique identifier per incident
  • date — ISO 8601 date/time (e.g., 2024-07-15T14:30:00Z)
  • latitude and longitude
  • area_ha — burnt area in hectares (or other consistent unit)
  • intensity — numeric measure (e.g., fire radiative power, categorical severity) Optional but useful:
  • cause — human, lightning, controlled, unknown
  • vegetation_type — forest, grassland, agricultural, urban
  • region — administrative area
  • notes — free text for context

Data format:

  • Use CSV or GeoJSON for spatial data. CSV is simplest; GeoJSON preserves geometry and properties.

Quick CSV example:

id,date,latitude,longitude,area_ha,intensity,cause,vegetation_type,region 001,2025-07-01T10:15:00Z,34.1234,-118.1234,12.5,3,human,chaparral,Los Angeles 002,2025-07-02T16:40:00Z,35.2345,-119.2345,250.0,8,lightning,forest,Central Valley 

Data cleaning checklist:

  • Convert dates to ISO 8601.
  • Ensure latitude in [-90,90] and longitude in [-180,180].
  • Fill or flag missing area/intensity values.
  • Remove duplicates by id.
  • Standardize categorical values (cause, vegetation_type, region).

2) Choosing visualization components

BurnPlot supports multiple coordinated views. For a first dashboard, pick a concise combination:

  • Map view (choropleth or point layer) — spatial distribution
  • Timeline (linked to map) — temporal sequence and filtering
  • Heatmap or density layer — concentration and hotspots
  • Bar chart or stacked area chart — causes or vegetation-type breakdown

Why these? Map + timeline provide geographic and temporal context; heatmap surfaces hotspots; charts summarize attributes.


3) Building the visualization — step-by-step

Assuming BurnPlot’s interface (web app or library) provides a drag-and-drop canvas plus data import. If you’re using a code-first API, equivalent steps apply.

Step A — Import data

  • Upload your CSV or GeoJSON.
  • Confirm field types: date parsed as date/time; lat/long recognized as coordinates; numeric fields parsed.

Step B — Create the map view

  • Choose a base map (satellite for context; terrain for vegetation features; neutral for print).
  • Add a point layer using latitude/longitude.
  • Visual encoding:
    • Size → area_ha (larger points for larger burns)
    • Color → intensity (use sequential color map, e.g., yellow→red)
  • Enable popups to show id, date, area_ha, cause, vegetation_type.

Step C — Add a timeline

  • Add a time slider linked to the date field.
  • Configure binning: day/week/month depending on dataset span.
  • Set play control for animation through time.

Step D — Create a heatmap/density layer

  • Use area_ha or intensity as weight for the density kernel.
  • Adjust radius/smoothing to reveal hotspots at the desired geographic scale.

Step E — Add attribute charts

  • Bar chart: count by cause
  • Stacked area or bar: area_ha by vegetation_type over time
  • Link charts to map and timeline for brushing & filtering.

Step F — Filters and interactions

  • Add dropdowns for region, cause, vegetation_type.
  • Allow clicking a map point or bar to highlight and filter other views.
  • Configure tooltips and legend for clarity.

4) Styling and accessibility

  • Color: use colorblind-friendly palettes (e.g., Viridis, ColorBrewer’s ColorBlind-safe schemes).
  • Legends: include clear units (ha, intensity scale) and date formats.
  • Labels: avoid overlapping labels; cluster or declutter points at high density.
  • Accessibility: ensure keyboard navigation works for timeline and filters; provide textual summaries for screen readers.

5) Performance tips for large datasets

  • Pre-aggregate by grid tiles or time bins for initial view; load details on demand.
  • Use vector tiles or server-side clustering for millions of points.
  • Simplify geometries and limit client-side heavy rendering.
  • Cache computed heatmaps or density surfaces.

6) Example workflows (short)

  • Rapid incident triage: sort by intensity → view on map → zoom to top events → filter by recent 48 hours.
  • Research trend analysis: aggregate area_ha monthly → compare by vegetation_type → export CSV of monthly totals.
  • Public communication: produce static export of map + timeline snapshot for press release.

7) Exporting, sharing, and reproducibility

  • Export options: static PNG/SVG for figures, interactive HTML embed, or data subset CSV/GeoJSON.
  • Share dashboards via a persistent link or export an interactive bundle.
  • Reproducibility: keep a data version and a saved dashboard configuration (or JSON spec) for audits.

8) Sample code snippet (pseudo) — creating a simple map & timeline via BurnPlot API

import { BurnPlot } from 'burnplot'; const data = await fetch('burns_2025.csv').then(r => r.text()); const bp = new BurnPlot('#canvas'); bp.loadCSV(data, { lat: 'latitude', lon: 'longitude', time: 'date' }); bp.addMapLayer({   type: 'points',   sizeField: 'area_ha',   colorField: 'intensity',   popupFields: ['id','date','area_ha','cause'] }); bp.addTimeline({ field: 'date', bin: 'day' }); bp.addHeatmap({ weightField: 'area_ha', radius: 30 }); bp.addFilterWidget('cause'); bp.render(); 

9) Troubleshooting common issues

  • Dates not parsed: ensure ISO 8601 or set custom parser/format.
  • Points overlapping: enable clustering or aggregate by hexbins.
  • Slow rendering: reduce point count, enable WebGL renderer if available.
  • Heatmap too smooth or noisy: adjust kernel radius and weight field.

10) Next steps & learning resources

  • Try adding satellite basemaps and land-cover overlays to link burn patterns with vegetation.
  • Integrate weather/wind data to study spread dynamics.
  • Automate ingestion from remote sensing feeds (MODIS/VIIRS) for near-real-time monitoring.

This guide sets up a practical, reproducible workflow to create a BurnPlot visualization that’s informative and actionable. If you want, tell me what dataset you have (sample rows or file type) and I’ll produce a tailored step-by-step config or a ready-to-run code snippet.

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *